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Abstract—An IDK classifier is a computational element that
classifies an input provided to it into one of a set of pre-
defined categories provided that it can achieve the necessary
confidence level to do so; otherwise, it outputs “I Don’t Know”
(IDK). The concept of IDK classifier cascades has emerged as
a strategy for striking a balance between the requirements of
rapid response and precise classification in machine perception.
Effective algorithms for constructing IDK classifier cascades have
recently been developed. Here we extend these prior approaches
by incorporating fault-tolerance: enabling classification that is
concurrently rapid and accurate even in the event of some of the
IDK classifiers exhibiting faulty behavior.

I. INTRODUCTION

A classifier is a software component that assigns each input
it receives to one of a predefined set of classes. In the realm
of autonomous mobile Cyber-Physical Systems (CPS), the
process of perception increasingly relies on classifiers founded
on Deep Learning and related AI technologies [8], [15], [6].
These classifiers are required to make accurate real-time pre-
dictions while working with limited computational resources.
A significant proportion of current machine learning research
tends to emphasize accuracy at the expense of real-time
considerations. This has led to the development of classifiers
with high accuracy that can be quite time-consuming when
processing even simple inputs that should be straightforward
to classify. For example, Wang et al. [17] demonstrated that for
a substantial proportion of the ImageNet 2012 benchmark [14],
a tenfold increase in classifier execution time resulted in
only a marginal enhancement in prediction accuracy. Their
recommendation was to strike a balance between accuracy and
processing speed by employing advanced (and hence slower)
classifiers exclusively for the more challenging cases, so that
the overall time required for successful classification would be
reduced without sacrificing accuracy. One approach aimed at
achieving appropriate accuracy-latency trade-offs is the use of
IDK classifiers [9], [16]. An IDK classifier can be derived
from any pre-existing base classifier; if the base classifier
fails to decide upon a classification with a confidence level
surpassing a specified confidence threshold, it instead outputs a
placeholder class, labeled as ‘IDK,’ signifying ‘I Don’t Know.’

For a given classification problem, it is possible to create
multiple distinct IDK classifiers, each with differing execution
times and probabilities of producing an actual class instead of
IDK. Wang et al. [17] suggested the organization of these
IDK classifiers into what they termed IDK cascades. These

cascades consist of sequences of IDK classifiers that function
as follows:

1) The initial classifier in the IDK cascade is the first to be
invoked when classifying any input.

2) If this classifier outputs a real class as opposed to IDK, then
the IDK cascade concludes, and the input is categorized
under the identified class.

3) If, on the other hand, the classifier outputs IDK, then the
next classifier in the IDK cascade is invoked, and the
process continues from step 2.

In scenarios where it is imperative that all inputs be clas-
sified (i.e., an IDK response from the cascade is unaccept-
able), IDK classifiers need to work in conjunction with a
more traditional deterministic classifier designed for the same
classification task. By placing a deterministic classifier as the
final component of an IDK cascade, it is ensured that the
IDK cascade will always yield a real class, since if all of the
IDK classifiers produce IDK for a particular input, then the
deterministic classifier will step in to provide a definitive clas-
sification, or alternatively, instigate an appropriate degraded
behavior.

This work. Recent research in the real-time systems commu-
nity (e.g., [1], [2], [4], [5]) has studied IDK classifiers from
the perspective of synthesizing IDK cascades that minimize the
expected execution duration needed to obtain a real (i.e., non-
IDK) classification, optionally within a specified latency con-
straint. In this paper we additionally allow for the possibility
that individual IDK classifiers may occasionally exhibit faulty
behavior on some inputs; in the sense that they may incorrectly
classify the input as belonging to a class that does not match
the ground truth. We seek to synthesize IDK cascades that are
tolerant to such faults. Specifically, the contributions of this
paper include the following:

1) In order to obtain an understanding of fault modeling for
real-time classification problems, we conduct a systematic
study that characterizes the sources of failures and the
means of mitigation.

2) Based on this study, we propose a framework for studying
fault-tolerance in IDK Cascades, by identifying a set of
distinguishing characteristics of any classification problem
that may be solved using IDK cascades, and seeking to
understand how these characteristics dictate the specific
modeling and mitigation strategy that needs to be used.



3) We instantiate this framework for a particular fault-
tolerant classification problem, deriving an algorithm for
synthesizing optimal fault-tolerant IDK cascades for this
instantiation (i.e., this particular problem).

4) We evaluate our algorithm on real-world data in order to
demonstrate its performance in practice.

Organization. The remainder of the paper is organized as
follows. In Section II, we describe the system model (largely
adapted from prior real-time systems research on IDK classi-
fiers [1], [2], [4], [5]) that we use, and briefly state how we plan
to extend it to incorporate considerations of fault tolerance. In
Section III, we survey prior publications related to our work. In
Section IV, we identify fault models for IDK classifiers, and in
Section V, outline a framework for defining fault-tolerant IDK
cascades. In Section VI, we explore a particular instantiation
of the framework proposed in Sections IV and V. We specify
a concrete fault-tolerance problem involving IDK classifiers
that we aim to solve, provide a detailed illustrative example,
and derive an optimal algorithm for solving the problem.
We provide an experimental evaluation of this algorithm in
Section VII, thereby demonstrating its applicability on a real
case study. We conclude in Section VIII with some directions
for future research.

II. MODEL

We first describe the formal model for IDK classifiers that
has previously been considered in the real-time literature,
before briefly discussing how we propose to extend the model
in order to account for the possible occurrence of faults.

Consider a scenario in which we have n IDK classifiers
denoted by K1,K2, . . . ,Kn, all for the same classification
problem. As mentioned in Section I, we assume that there is
a probability associated with each of these classifiers success-
fully classifying any given input. These classifiers may exhibit
various mutual dependences between their behaviors; they are
not obliged to be independent. In a conceptual framework, it
proves useful to envision the probability space for these n IDK
classifiers as a Venn Diagram divided into 2n distinct regions.
Each of these regions corresponds to one of the 2n potential
combinations of the n individual classifiers returning either a
real class or IDK for an input, see Figure 1 for the case of
n = 3 classifiers.

Abdelzaher et al. [1] provide a description of how profiling
using representative input data can be employed to estimate
the probability values linked to each of these 2n regions. In
essence, this methodology involves the following steps: (i)
maintaining a counter, initially set to zero, corresponding to
each of these 2n regions; (ii) processing each input sample
from the profiling data by having each of the n IDK classifiers
process it and observing the outcome, whether it is IDK or
not; (iii) incrementing the relevant counters based on these
outcomes; and (iv) after evaluating all profiling input samples,
dividing each counter value by the total number of samples,
hence computing the estimated probability for the precise
outcome associated with the respective region. For example,
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Fig. 1. The 2n disjoint regions in the probability space for three IDK
classifiers (n = 3) and one deterministic classifier. The blue, red, and brown
ellipses respectively denote the regions of the probability space where the
classifiers K1, K2, and K3 are successful (i.e., do not output IDK). The
enclosing rectangle denotes the region in which the deterministic classifier is
successful (i.e., all inputs). Each of the 23 = 8 disjoint regions into which the
probability space is partitioned by the three ellipses is labeled with a 3-tuple,
with Ki (Ki, respectively) denoting that the the IDK classifier Ki returns a
real class (resp. IDK) in this region.

a region such as (K1,K2,K3), indicating that classifier K1

reports a real class while classifiers K2 and K3 output IDK,
is assigned an estimated probability of occurrence. Thus the
methodology characterizes the IDK classifiers by:
1) The expected (i.e., average) and the worst-case execution

times of each of the n classifiers; and
2) The 2n probability estimates, one corresponding to each of

the 2n possible combinations of the n individual classifiers
returning either a real class or IDK.

Note that the size of the model used to characterize the n
IDK classifiers is Θ(2n). This exponential model size is a
necessity when dealing with classifiers that exhibit arbitrary
inter-dependences between their behaviors. To encompass
these arbitrary dependences between all pairs of classifiers,
it is vital to quantify the probability of each of the 2n subsets
of classifiers successfully classifying inputs, as is done in [1].
The number of IDK classifiers, denoted as n, available for
solving a specific classification problem, is clearly application
dependent. For example, in the extensive Multi-Modal case
study detailed in [1], there are 9 classifiers. These classifiers
are constructed from various neural-network architectures and
employ multiple input modes (vision, acoustic, and seismic).
As a general guideline, values of n exceeding approximately
10 to 12 are unlikely to be commonly encountered in practical
applications. Therefore, the exponential model size, which is
viable up to approximately n = 20, is not a concern in
practice. We note that it is important to consider arbitrary
dependences between classifiers in this way, since classifiers
exhibit a range of dependences and degrees of correlation
in their outputs. By contrast, classifier execution times are
typically independent, as evidenced in [1].

Incorporating Faults. As stated in Section I, the main ob-
jective of this paper is to extend the IDK classifier model
described above (and studied in previous work such as [1],
[2], [4], [5]) to incorporate fault tolerance. Specifically, we say
that a fault occurs whenever, on some input, an IDK classifier
returns a real (i.e., non IDK) class that does not match the



ground truth (i.e., the true class to which that input actually
belongs). A fault model specifies what kinds of faults may
occur, and how faults in the outputs of different IDK classifiers
are correlated. This is discussed in detail in Section IV, where
the notion of exclusivity sets is introduced to formalize the
potential for common failures in different IDK classifiers.

III. RELATED WORK

In their pursuit of establishing a scheduling-theoretic frame-
work that facilitates the incorporation of AI-based algo-
rithms into hard real-time safety-critical systems, the real-time
scheduling theory community, starting from 2021, has directed
its attention towards the investigation of IDK classifiers [1],
[2], [4], [5]. Their objective is to develop the capability to
construct IDK cascades that minimize the expected execution
duration required to achieve successful classification, while
optionally adhering to a specified latency constraint. The work-
load model employed here (elaborated in Section II above)
is adopted from [1], which also provides a comprehensive
overview of previous research concerning the synthesis of IDK
cascades.

Simpler models compared to the one outlined in [1] have
been defined, but these models rely on specific assump-
tions concerning the inter-dependences among the behaviors
of different IDK classifiers. For example, an assumption is
made in [5] that all classifiers exhibit pair-wise independence,
whereas [4] allows for classifiers that are fully dependent
and also considers a combination of classifiers with both
independent and fully dependent behaviors.

A recognition that IDK classifiers do not perform perfectly
in such an idealized manner is taken into account in [2].
This work focuses on binary classes where false-negative
and false-positive behaviors are possible. IDK cascades are
synthesised that minimize the probability of false positives
while meeting both a latency constraint and a constraint on the
maximum acceptable probability of false negatives. Our work
also considers fault tolerance, but uses a more expressive fault
model, as described in Section IV.

A different perspective on non-idealized behavior was re-
cently examined in [3]. There, the probability values character-
izing the behavior of the IDK classifiers are taken to represent
predictions (i.e., estimates) of their true values, which are
assumed to be unknown. The objective is then to synthesize
IDK cascades that are robust to incorrect predictions. It would
be interesting to additionally incorporate the possibility of
faults into the model from [3]; however, doing so is outside
of the scope of this paper, and hence left for future research.

IV. FAULT MODELS FOR REAL-TIME CLASSIFIERS

This section provides an understanding of the categories of
failures that affect IDK classifier behavior, and hence how to
produce IDK cascades that mitigate the effects of the failures,
so that the overall classification process is fault tolerant.

A. Understanding the Categories of Failures

The first step in understanding the categories of failure is to
understand the faults that lead to them. A classical approach
for understanding how failures can occur is a fault tree. Fault
trees are widely used in the critical systems industry having
first been developed as part of justifying that Inter-Continental
Ballistic Missiles could not be launched inadvertently [18], [7].
A survey [13] of over 150 uses of the technique illustrates its
widespread adoption. Figure 2 shows a simplified version of a
fault tree for an IDK classifier. The top-level event starts with
the hazard of concern, Individual classifier provides plausible
incorrect result, which is then decomposed into failures that
cause the higher-level failure. At the bottom level are either
basic failure events, i.e., those that are not decomposed further,
or a failure that could be extended elsewhere in the case of
Insufficient training in the current context. The reason the
fault tree is considered simplified is that in practice all of
the bottom-level failures, e.g., Sensor(s) provides a distorted
representation of the object, have not been decomposed further
into what causes them.

Fig. 2. Fault Tree for an IDK classifier

The key information that can be taken from this fault tree
is that the left-hand side consists of random failures and the
right-hand side consists of systematic failures. This distinction
is important for a number of reasons. The main one being that
random failures are unpredictable in terms of the inputs that
they affect, hence these failures are more difficult to test for
and to eliminate. Random failures common to more than one
classifier can occur due to failure of, or interference with,
shared hardware components. For example, a fault or dirt on
an optical sensor distorts the image, wind over a microphone
distorts the audio signal, local vibrations interfere with the
readings from a seismometer. These failures have the potential
to affect the output from every classifier that uses that type
of input data. Systematic failures tend to be predictable in
terms of manifesting repeatedly given the same or similar
inputs. Systematic failures common to more than one classifier
can occur due to errors in the same large data sets used to
train them, inadequate training data for the specific operational



context, and software bugs affecting a common neural network
architecture.

B. Characterizing Mitigation Strategies

It is important to understand how failures may be tolerated.
System functions typically fall into two categories: ones where
fail safe is sufficient, i.e., in the event of a failure stopping
executing the function is acceptable; or fail operational where
even after a bounded number of failures the system should con-
tinue operating as expected. The difference can be explained
using the classical fault-tolerance architectural patterns that
are applied in this paper, see Figure 3. The pattern on the
left-hand side is the fail-safe version where in the case of
disagreement there is a deterministic classifier that can decide
which class should be output or instigate a fail-safe behavior,
e.g., an autonomous vehicle may need to park itself as soon
as possible or the driver must take control. The pattern on the
right-hand side is where in the case of a single failure, even
with a disagreement, a real class can be output and the faulty
classifier can be identified. We note that with more than three
classifiers, the pattern on the right-hand side can be extended,
so a real class and the faulty classifiers can be identified [10].
The fact that the faulty classifier can be identified means that
the system can be fail operational, e.g., an autonomous vehicle
can continue to operate as expected.

Fig. 3. Architectural Failure Patterns

Within the context of IDK classifiers, we know that they do
not necessarily exhibit independent behavior. It is therefore
not adequate to just run two arbitrary classifiers in order
to identify a fault. Rather, we require that common failure
of the classifiers is sufficiently unlikely for the application
under consideration. To derive the required evidence, the two
categories of failure, random and systematic, are dealt with
separately:

1) Random – A fault tree is produced for each classifier. Each
of the Basic Errors (events) is examined to identify which
classifiers have common error events i.e., the same single
error can cause two or more classifiers to produce the same
incorrect results.

2) Systematic – The profiling data is used directly to com-
pute the pair-wise correlation coefficients for each pair of
classifiers failing on the same input data.

For each classifier the above operations are used to identify
those other classifiers that may exhibit dependent failures.
Suppose, for example, that two classifiers both take input
from the same sensor; a failure of that sensor would cause
both classifiers to fail. We refer to such pairs of classifiers as
exclusivity pairs to denote that they cannot be used to validate
each other’s classification decisions. We note that exclusivity
pairs are not necessarily transitive: it is possible that classifiers
Ki and Kj form one exclusivity pair and classifiers Kj and
Kk another exclusivity pair, but classifiers Ki and Kk do not
form an exclusivity pair. (This can easily happen in practice,
if classifier Kj uses readings from two sensors, one of which
is also read by Ki, and the other by Kk).

We refer to the set of all classifiers that cannot be used
to validate the classification decisions of a classifier Ki as
its exclusivity set; denoted by E(Ki). Hence, if classifier Ki

outputs a real class, rather than IDK, then to identify a single
fault will require some other classifier not contained in E(Ki)
to also output a real class. If these classes are identical then
there is no fault; if they differ then one classifier has failed;
however, which one cannot be determined.

Since the exclusivity sets are based on exclusivity pairs,
it follows that if Ki ∈ E(Kj), then Kj ∈ E(Ki). We also
assume that Ki ∈ E(Ki); meaning that executing the same
classifier twice does not enable a fault to be identified; though
for some random failures this may not be the case.

V. A FRAMEWORK FOR DEFINING FAULT TOLERANT IDK
CASCADES

In this section we introduce a framework that allows a
wide range of classification problems to be specified. Each
specific problem, that requires a cascade of IDK classifiers to
be derived, is defined by the following characteristics:

• Output Class
• Timing Constraint
• Fault Model
• Data Model
• Fault Recovery Technique
• Optimization Criteria

These characteristics are described below.

Output Class. The output class can either be binary (e.g., Haz-
ard or Clear) or multi-class (e.g., Pedestrian, Cyclist, Car,
Truck). It can also include a class that indicates that the input
is void (e.g. Cat, Dog, NONE). The output can be a single
class, or an ordered list of the most likely classes.

Timing Constraint. The classification may be subject to a
latency constraint, i.e., an output must be produced by a
specified deadline. This deadline will usually apply to the
execution of the complete IDK cascade including the deter-
ministic classifier; however, in some problem instances the
deterministic classifier may have a later deadline.



Fault Model. A fault is an output that is not IDK and not the
ground truth. It could be caused by a random error (e.g., a
sensor failure) or a systematic error (e.g., an issue with the
training data). The fault model defines the number of faults to
be tolerated (fail safe or fail operational). The faults may be
considered independent or correlated.

We are concerned with systems in which one or more
potential failures may be critical. For example, with a class
that is either ‘Hazard’ or ‘Clear’, then outputting ‘Clear’ when
there is a ‘Hazard’ is usually critical. Outputting ‘Hazard’
when the correct output is ‘Clear’ may in some problem
instances also be critical, while in others it just represents
degraded performance, to be minimized.

Data Model. During profiling it is necessary to gather data that
will enable the optimal IDK cascade to be constructed. The
profiling process may constrain what data can be collected, and
this will restrict the choice of fault recovery techniques and
optimization criteria. Typical data collected for each classifier
during profiling includes: expected (i.e. average) execution
time, worst-case execution time, probability of outputting IDK,
and overall success rate. There may also be data collected
related to the correlated behavior of the classifiers, for example
enabling probability estimates to be determined corresponding
to each possible combination of the n individual classifiers
returning either a real class or IDK, as well as pair-wise
correlation coefficients describing the failure behavior.

Fault Recovery Technique. To identify a single fault requires
the execution of two classifiers whose failure behaviors are
sufficiently independent. To identify F faults requires F + 1
such classifiers. To recover from a single fault it is usually
enough to execute three sufficiently independent classifiers.
For F faults, 2F + 1 classifiers must be invoked. Within
the context of IDK classifiers, the above numbers apply to
classifiers outputting real classes, rather than IDK. Any IDK
output will require more classifiers to be executed. At any
stage during this process the deterministic classifier can be em-
ployed to complete classification. The deterministic classifier
may use information from a further classifier, extrapolate from
previous outputs, or invoke an application specific degraded
level of service that remains safe; for example assuming that
the class is ‘Hazard’ and responding accordingly.

Optimization Criteria. Given a set of classifiers, a fault
model, a data model, and a fault recovery technique, an IDK
cascade of classifiers must be synthesised that satisfies the
requirements of the fault model and the timing constraints.
As, in general, there is likely to be more than one solution,
this synthesis can also optimize some other aspect of the
problem (such as the likelihood of false positives/negatives or
the minimization of fault free execution duration). The IDK
cascade may be a linear sequence or more generally it may
have branching capabilities, and thus be represented by a DAG.

In the remainder of this paper, we focus on a simple specific
problem. The output class is binary, the fault model requires F
faults to be identified, and the recovery technique is handled
by the deterministic classifier. The optimization criterion is

to minimize the expected execution duration of fault free
behavior, i.e., the overall expected execution time of the IDK
cascade when no fault occurs. The data model consists of
classifier execution times (average case and worst case), and
classification output in terms of success/failure/IDK over the
profiling data. The required IDK cascade is a linear sequence,
with no branching. Dynamic solutions, skipping classifiers or
altering the sequence of classifiers based on the outputs of
previous classifiers in the cascade, are left for future research.

VI. SPECIFIC EXAMPLE AND ITS ANALYSIS

In this section we illustrate, on a small example, how to
synthesize an optimal IDK cascade. As noted above, we
consider a simple fault model, with F faults to be tolerated.
Recovery is handled by the deterministic classifier, which by
definition of the fault model is itself assumed to be fault-
free. Initially we assume no latency constraints (i.e., hard
deadlines), but later show how they can be incorporated.

A. The Problem Considered

Assume we have a collection K1,K2, . . . ,Kn of different
IDK classifiers, as well as a deterministic classifier Kd, for
the same classification problem. This collection of classifiers
is characterized by:
1) The average-case (i.e., expected) execution time and the

worst-case execution time for each of the classifiers, with
Ci denoting the expected execution time of classifier Ki.

2) The 2n probability estimates, one corresponding to each
of the 2n possible combinations of the n individual IDK
classifiers either returning a real class or IDK.

3) The n exclusivity sets E(K1), E(K2), . . . , E(Kn), with the
exclusivity set E(Ki) denoting the set of classifiers that
cannot be used to validate, for the purposes of fault
tolerance, a classification made by Ki.

Given this collection of classifiers, our goal is to synthesize
an IDK cascade, with the fault-free deterministic classifier Kd

as the last classifier in the cascade, that is able to tolerate
F faults. Since a faulty classification by F classifiers must
be tolerated, then either (i) F + 1 different IDK classifiers
that are not in each other’s exclusivity sets must agree upon
the real (i.e., non IDK) class to which any input belongs,
or (ii) the deterministic classifier must make an authoritative
classification. Our performance objective is to have this IDK
cascade perform the classification with the minimum expected
execution duration across all fault-free behaviors1.

At run-time, classifiers are executed sequentially in the order
in which they appear in the IDK cascade, until either: (i) F+1
classifiers that are not in each other’s exclusivity sets have
returned real (i.e., non-IDK) classes; or (ii) the deterministic
classifier Kd is executed, i.e., we have reached the end of
the IDK cascade. If Kd is indeed executed, then we return
the class that it outputs. Otherwise, once F +1 classifiers not

1Here, we are making the implicit assumption that faults are relatively rare,
and hence optimizing for expected execution duration in the presence of faults
is unlikely to be useful.
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Row C l a s s i f i e r s Prob-S Prob-E
No. K1 K2 K3 K4 (Probabilities) (Probabilities)

0 0 0 0 0 0.05 0
1 0 0 0 1 0 0
2 0 0 1 0 0 0
3 0 0 1 1 0 0
4 0 1 0 0 0.15 0
5 0 1 0 1 0.05 0.05
6 0 1 1 0 0.15 0.20
7 0 1 1 1 0 0.25
8 1 0 0 0 0.05 0
9 1 0 0 1 0.05 0.05

10 1 0 1 0 0.25 0
11 1 0 1 1 0 0
12 1 1 0 0 0.20 0.25
13 1 1 0 1 0 0.35
14 1 1 1 0 0.05 0.40
15 1 1 1 1 0 0.50

Exclusivity Sets

IDK Classifier Ki Exclusivity set E(Ki)
K1 {K1,K3}
K2 {K2}
K3 {K1,K3}
K4 {K4}

Fig. 4. The 4-classifier example, discussed in Section VI-B. Left: Venn-diagram representation of the probabilities of each classifier returning a real class.
Center: The same information, in tabular form (Prob-S values), as well as computed intermediate probabilities (Prob-E). Right: The exclusivity sets.

in each other’s exclusivity sets return real classes, we check
whether or not these classifiers have returned the same class.
If so, we return this class and are done, otherwise a fault is
detected and we immediately call the deterministic classifier
Kd and return the class that is output by Kd.

B. An Example

We now work through a simple example in order to illustrate
the process of computing the expected execution duration,
in fault-free operation, of a given IDK cascade.2 To ease
understanding, the worked example considers that a single
fault must be tolerated, i.e., F = 1.

Suppose we have four IDK classifiers K1,K2,K3, and K4,
and a deterministic classifier Kd. The probabilities associated
with each of the 24 = 16 possible combinations of the
four IDK classifiers are provided in Figure 4, both as a
Venn diagram and in tabular form. In the table, the column
entitled Prob-S represents the probabilities associated with the
different combinations of outcomes when all of the classifiers
are run. This terminology is taken from [1]: “Prob-S [. . . ]
denotes the probability that exactly the specific pattern of IDK
classifiers indicated by 1’s will be able to classify an input,
and those indicated by 0’s will not and so will return IDK.”.
Their exclusivity sets are also specified in Figure 4 — these
essentially state that K1 and K3 comprise an exclusivity pair,
and that the remaining classifiers are independent from the
perspective of susceptibility to faulty behavior.

We also introduce an intermediate probability Prob-E
(shown in the table in Figure 4), with the following meaning.
Prob-E is the probability that when only those classifiers
indicated by 1’s in the associated row of the table are executed,
then at least F +1, i.e. two, of those classifiers that are not in
each other’s exclusivity sets will return a real class. In other
words, Prob-E is the probability that under fault-free operation,

2This example is contrived for illustrative purposes and is not intended
to be realistic. The probability values have been chosen to highlight salient
features of the problem and our proposed solutions, rather than to be faithful
to reality. Evaluations on real-world case studies are detailed in Section VII.

no further classifiers will need to execute. We return to how
the Prob-E values are computed later.

Let us compute the expected execution duration, assuming
fault-free operation, of the IDK cascade

⟨K1,K2,K3,K4,Kd⟩ (1)

Since we seek 1-fault tolerance, classifiers K1 and K2 will
always execute. It is evident from Figure 4 that they will
both succeed, i.e., return real classes, with probability 0.20 +
0.05 = 0.25. (Note, this is the Prob-E value in row 12 of the
table, corresponding to {K1,K2}). Hence, the probability that
classifier K3 will execute is equal to

1− 0.25 = 0.75

Further, classifier K4 will execute unless either or both of
K1 and K3, as well as K2, have returned real classes. From
the Venn diagram in Figure 4, we see that the probability of
this happening is equal to

1− (0.20 + 0.15 + 0.05) = 0.60

Here, 0.20 is the probability that only K1 and K2 return real
classes, 0.15 is the probability that only K3 and K2 return real
classes, and 0.05 is the probability that all three of K1,K2 and
K3 return real classes. (Note, these three values sum to 0.4,
which is the Prob-E value in row 14 of the table, corresponding
to {K1,K2,K3}).

Finally, the deterministic classifier Kd executes, in fault-free
operation, unless at least two of

(K1 ∨K3),K2,K4 (2)

return a real class. Let us refer to this happening as event A.
We see from Figure 4 that only K1 and K2 succeed with

probability 0.2, only K1 and K4 succeed with probability 0.05,
only K3 and K4 succeed with probability 0, and only K3

and K2 succeed with probability 0.15. Further, only K2 and
K4 succeed with probability 0.05, and only K1, K2 and K3

succeed with probability 0.05. Finally, there is zero probability



that K4 succeeds along with two or more other classifiers.
Hence the probability of event A happening is 0.5. (This
is the Prob-E value in row 15 of the table, corresponding
to {K1,K2,K3,K4}). Hence the probability of Kd being
executed is equal to

(1− 0.5) = 0.50

Putting the above pieces together, we have the following
expression for the expected execution duration of the IDK
cascade ⟨K1,K2,K3,K4,Kd⟩

K1 and K2︷ ︸︸ ︷
(C1 + C2)+

K3︷ ︸︸ ︷
0.75× C3 +

K4︷ ︸︸ ︷
0.60× C4 +

Kd︷ ︸︸ ︷
0.5× Cd (3)

Assuming that the expected execution times of the classifiers
K1, K2, K3, K4, and Kd are 10, 12, 20, 280, and 500
respectively, then the expected execution duration of the IDK
cascade is 455.

Next, let us repeat the exercise on the IDK cascade

⟨K1,K2,K4,K3,Kd⟩ (4)

and compute its expected execution duration, also assuming
fault-free operation. As before, K1 and K2 both always
execute. Next, K4 will execute unless both K1 and K2 return
a real class, this happens with probability

1− (0.20 + 0.05) = 0.75

Further, classifier K3 will execute unless two or more of
K1,K2, and K4 return real classes. From the Venn diagram
in Figure 4, we see that the probability of this happening is
equal to

1− (0.25 + 0.05 + 0.05) = 0.65

Here, 0.25 is the probability that, of those three classifiers,
only K1 and K2 return real classes, the first 0.05 is the
probability that only K1 and K4 return real classes, and the
second 0.05 is the probability that only K2 and K4 return
real classes. Further, there is zero probability that all three
classifiers will return real classes. (The sum of these values
is 0.35. This is the Prob-E value in row 13 of the table,
corresponding to {K1,K2,K4}).

Finally, we observe that the deterministic classifier Kd

executes unless at least two of

(K1 ∨K3),K2,K4

return a real class. Note that this is exactly the event A defined
in (2) above. As we have already computed the probability of
event A to be equal to 0.5; putting the above pieces together,
we have the following expression for the expected execution
duration of the IDK cascade ⟨K1,K2,K4,K3,Kd⟩

K1 and K2︷ ︸︸ ︷
(C1 + C2)+

K4︷ ︸︸ ︷
0.75× C4 +

K3︷ ︸︸ ︷
0.65× C3 +

Kd︷ ︸︸ ︷
0.5× Cd (5)

Assuming the same execution times for the classifiers
as before, this IDK cascade has an expected execution
duration of 495 compared to 455. for the IDK cascade
⟨K1,K2,K3,K4,Kd⟩.

C. Computing the Prob-E Probabilities

In the above example, we showed how the expected execu-
tion duration of a given IDK cascade may be computed. As
part of that example, we referred to how the Prob-E values
may be used as intermediate values, simplifying and speeding
up the calculation. We now describe how these values can
be computed from the Prob-S values, obtained via profiling.
In doing so, we cater for the general case of F faults,
and thus require that F + 1 classifiers that are not in each
other’s exclusivity sets return real classes in order to meet the
requirements for fault tolerance.

First, we provide a mathematical formulation of how the
Prob-E values can computed for each of the 2n subsets of
classifiers S. We then describe how these values can be
computed efficiently.

Recall that the probability space is divided into 2n regions
representing the probability, here referred to as Prob-S(T ),
of exactly the classifiers in the subset T returning a real
classification, and those classifiers that are not in T returning
IDK, when all of the classifiers are executed. Further, Prob-
E(S) is the probability that when only those classifiers in the
subset S are executed, then at least F + 1 of those classifiers
that are not in each other’s exclusivity sets will return a real
class. Prob-E(S) can be defined as a summation over the
regions of the probability space, represented by the 2n unique
subsets T , as follows:

Prob-E(S) = (6)∑
∀T

Prob-S(T ) : ∃Q : Q ⊆ (S ∩ T ) ∧ |Q| = F + 1

∧ ∄Ki,Kj ∈ Q,Ki ̸= Kj ,Ki ∈ E(Ki)

In the above formulation, each region T of the probability
space contributes its probability, Prob-S(T ), to Prob-E(S) if
and only if there exists some subset Q of exactly F + 1
classifiers, Ki, Kj etc., that are not in each others exclusion
sets, and the classifiers in Q are in S, i.e., they are all executed,
and they are also in T , i.e., they all return a real class.

For each set of the 2n sets of classifiers S (identified by
1’s in the classifier columns in the table in Figure 4), we
can efficiently compute the corresponding Prob-E(S) value as
follows. First, we initialize Prob-E(S) to zero. Then, for each
of the 2n rows in the table representing a set of classifiers T ,
we determine the intersection V = S ∩ T , which represents
the set of classifiers in S that would return a real class in this
case. To cater for F faults, we use a validity table of Boolean
values, Valid(V ), indicating whether all of the classifiers in
V returning a real class would be sufficient to obtain at least
F +1 real classes from classifiers that are not in each other’s
exclusivity sets. The derivation of this lookup table is given
below. If Valid(V ) is true, then the Prob-S(T ) value is added
to Prob-E(S).

The validity table is computed from a further sufficiency
table of 2n Boolean values, Suffice(Q), which correspond to
the 2n distinct sets of classifiers Q. Suffice(Q) is defined to



be true if and only if the set Q contains exactly F + 1
classifiers and none of those classifiers are in each other’s
exclusivity sets. (This exclusivity requirement can be checked
by determining if there exists a pair of classifiers Ki,Kj ∈ Q,
Ki ̸= Kj , such that Ki ∈ E(Kj)).

The 2n Boolean values, Valid(V ), in the validity table are
computed as follows. First, Valid(V ) is initialized to false,
then for each of the 2n distinct sets Q, we determine if (i)
Suffice(Q) is true and (ii) Q is a subset of V , i.e., V ∩Q = Q.
If both of these conditions hold then Valid(V ) is set to true.
In other words, Valid(V ) is true if and only if there exists
some subset of V consisting of exactly F + 1 classifiers that
return real classes and are not in each others exclusivity sets.

Using a binary representation of the sets of classifiers, and
assuming that set operations such as intersection, counting the
number of members of a set, and table lookup based on set
membership can be done in O(1) time3, then (i) the complexity
of determining the 2n Prob-E values from the Prob-S values
and the validity table is O(2n · 2n) = O(4n); (ii) the com-
plexity of determining the 2n values in the validity table from
the 2n values in the sufficiency table is O(2n · 2n) = O(4n);
and (iii) the complexity of determining the 2n values in the
sufficiency table is O(n(n− 1) · 2n), which is trivially upper
bounded by O(4n), since n(n − 1) ≤ 2n. It follows that the
overall complexity involved in deriving the 2n Prob-E values is
O(4n). This is the same complexity as the case for zero faults
derived in [1]. Hence, this method caters for a requirement
to tolerate F faults, with no increase in complexity over
the no fault case.

We now return to our worked example, assuming that one
fault must be tolerated. Consider computing the Prob-E value
for S = {K1,K2,K3}, i.e., row 14 of the table in Figure 4.
For each set T (row in the table) we determine the intersection
set V = S ∩T , and whether there is a contribution from V to
the Prob-E value for S.
• Rows 0-5, 8, and 9, the intersection set V contains zero or

one classifiers, and so these rows trivially do not contribute.
• Rows 6 and 7, the intersection set V contains K2 and K3,

since these classifiers are not in each other’s exclusivity sets,
these rows contribute their Prob-S values (0.15 and 0).

• Rows 10 and 11, the intersection set V contains only K1

and K3, since these classifiers are in each other’s exclusivity
sets, these rows do not contribute.

• Rows 12-15, the intersection set V contains K1 and K2,
since these classifiers are not in each other’s exclusivity sets,
these rows contribute their Prob-S values (0.2, 0, 0.05, 0).

Summing the contributions, the Prob-E value for S =
{K1,K2,K3} is 0.4 (see row 14 of the table in Figure 4).

D. A Naı̈ve Algorithm

As shown above, it is straightforward to compute the
expected execution duration, assuming fault-free operation, for
any given IDK cascade. This observation immediately yields a
naı̈ve algorithm for determining the IDK cascade of minimum

3This is easily achievable for n ≤ 64 on a 64-bit computer architecture.
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Fig. 5. DAG: The first vertex represents the empty set of IDK classifiers, and
the last vertex represents the deterministic classifier Kd that terminates each
IDK cascade.

expected execution duration: simply examine all IDK cascades
that can be constructed from the available classifiers, and
choose the one with the smallest expected execution duration.
Unfortunately, such an approach of exhaustive enumeration is
computationally intractable even when the number of available
distinct classifiers is relatively small, since it is straightforward
to show that we can synthesize Θ(n!) distinct IDK cascades
from a given collection of n classifiers.

However, our example computations above illustrate an
important property: the probability of a particular classifier
in an IDK cascade executing or not is determined solely by
the set of classifiers that preceded it in the IDK cascade,
not the relative order in which they appear. For example,
observe that the terms corresponding to classifier Kd in both
(3) and (5) are the same. This is because the set of classifiers
preceding Kd in both the IDK cascades of (1) and (4) are the
same ({K1,K2,K3,K4}), even though these classifiers occur
in a different permutation in (1) and (4). A similar property
had previously been observed [1] when fault tolerance was
not considered. The fact that this property continues to hold
even in the presence of potential faults enables us to exploit
it. In Section VI-E, we derive an algorithm for identifying
the IDK cascade of minimum expected execution duration in
fault-free operation by implicitly examining only O(2n), rather
than Θ(n!), distinct IDK cascades. As pointed out in [1],
this improvement can be very significant; e.g., 210 = 1024
while 10! > 3.6 million; 220 is about one million whereas
20! ≈ 2.4× 1018; etc.

E. Synthesizing Optimal Cascades

In the previous section, we observed the important property
that the probability of a particular classifier in an IDK cascade
executing or not depends only on the set of classifiers that
preceded it in the IDK cascade, and not on their relative
ordering. We now describe how this property allows us to



represent individual IDK cascades as paths through a Directed
Acyclic Graph (DAG) in which the vertices represent sets of
classifiers and the edges correspond to adding a classifier to
the end of a partially-constructed IDK cascade.

Suppose we have n IDK classifiers K1,K2, . . . ,Kn, and a
deterministic classifier Kd. We construct a DAG with (2n+1)
vertices, arranged in (n+2) layers, as follows. (The DAG for
n = 4 is depicted in Figure 5).

• For each i ∈ {0, 1, . . . , n}, each vertex in layer i represents
a different subset, of cardinality i, of the set of available
IDK classifiers. The vertex in the lowest layer (layer n+1)
has a different interpretation: it represents the addition of the
deterministic classifier Kd to the end of an IDK cascade.
In the DAG for n = 4 depicted in Figure 5, each vertex
in layers 1-4 is labeled with a binary coding identifying
the classifiers in the subset that the vertex represents. (For
example, the vertex labeled “1011” represents the set of IDK
classifiers {K1,K3,K4}.)

• Let S denote the set of IDK classifiers represented by a
particular vertex in layer i, 0 ≤ i < n. We add an edge from
this vertex to each vertex in layer (i+1) that represents the
union of S and one additional IDK classifier ̸∈ S. The black
arrows in Figure 5 represent these edges.

• We also add an edge from each vertex in the layers num-
bered 0, 1, . . . , n to the sole vertex in the layer numbered
(n+1). (These edges are not explicitly depicted in Figure 5,
in order to enhance clarity).

• Now every IDK cascade can be represented as a path in
this DAG from the vertex in layer 0 to the vertex in layer
(n+1), with the vertex in this path that lies in the ith level
of the DAG representing the subset comprising the first i
classifiers in the IDK cascade for each i, 1 ≤ i ≤ n.
Some such paths are highlighted in Figure 5. Those
corresponding to the cascades (K3,K2,K1,Kd) and
(K1,K2,K3,K4,Kd), are completely shown, while the
path corresponding to the cascade (K1,K2,K4,K3,Kd)
overlaps with the path (K1,K2,K3,K4,Kd) for the first
two edges and the last edge, with the difference between
the two paths, “1100”→“1101”→“1111”, shown in red.

Next we label the edges of the DAG with the edge-costs,
such that the expected execution duration of any IDK cascade
is equal to the sum of the edge-costs on the corresponding
path in the DAG. (The construction of the DAG, as described
above, is essentially the same as described in [1]; however the
computation of the edge-costs is different, as detailed below).

Determining the edge-costs. Let S denote any set of IDK
classifiers, and consider the edge in the DAG from the vertex
corresponding to the set S to the vertex corresponding to(
S ∪ {Kℓ}

)
, where Kℓ ̸∈ S is the classifier added along that

edge. The edge-cost is equal to Cℓ (the expected execution
time of classifier Kℓ) multiplied by the probability that clas-
sifier Kℓ will be executed in any IDK cascade in which S is
the set of classifiers that precede it. This probability is given
by (1 − P (S)), where P (S) is the Prob-E value associated
with the set S in the probability table, hence the edge cost is

given by (1− P (S))Cℓ.

Determining the optimal IDK cascade. The problem of
determining the IDK cascade with minimum expected exe-
cution duration over all fault-free executions is reduced to
the problem of finding the shortest path from the sole start
vertex in layer 0 to the exit vertex in layer (n + 1). This is
a well-studied problem in graph theory, and algorithms are
known for determining the shortest path in a DAG in time
linear in the number of vertices plus edges. By using such an
algorithm, we can determine the optimal IDK cascade, the one
with the minimum expected execution duration over all fault-
free executions, in O(n·2n) time4, assuming O(1) time for the
look-up of each Prob-E value. Recall, from Section VI-C, that
the pre-processing required to compute the 2n Prob-E values
from the 2n Prob-S values in the probability table is O(4n).
Thus the overall running time of the algorithm is dominated
by the pre-processing stage, and is O(4n).

Incorporating hard deadlines. The algorithm may be gener-
alized to additionally allow for the specification of a latency
constraint, i.e., if it is required that classification must com-
plete within a specified deadline under all circumstances. From
the first (n + 1) layers of the DAG, we simply remove all
vertices for which the sum of the worst-case execution times
of the set of classifiers represented by that vertex, plus the
worst-case execution time of the deterministic classifier Kd,
exceeds the specified deadline. Note, if this removes all of the
vertices, then that implies that no feasible solution exists.

F. Challenges to Optimality and Fault-tolerance

Determining the optimal IDK cascade depends on obtain-
ing profiling data and hence a table of probabilities that
is representative of the behavior of the particular system
of classifiers in its operational scenario. If the data is not
representative, then the probability values may differ, and the
expected execution time duration of the IDK cascade would
not be precisely optimized; however, any deadlines would still
be met, assuming that valid worst-case execution time values
were used.

Obtaining the desired fault-tolerant behavior depends on
the correctness of the exclusivity sets, which in turn depend
on the analysis of systematic and random failures among the
classifiers. It is questionable whether there would necessarily
be sufficient evidence to identify the classifiers involved in
systematic failures. The use of Fault Trees is intended to
supplement this evidence by considering random failures. In
both cases, 100% guarantees are not typically possible. Rather,
the analysis aims to reduce the likelihood of using incorrect
information As Low As Reasonably Practicable (ALARP).

VII. EVALUATION: MULTI-MODAL CASE STUDY

In this section we evaluate our approach by demonstrating
its applicability to a real-world, multi-modal case study.

4There are 2n vertices in the DAG, with at most n edges emanating from
each vertex, and hence O(n · 2n) edges in all.



The data used in this case study was collected previ-
ously [11] as part of a project that seeks to autonomously
detect the presence of a potentially hostile enemy vehicle in
a battlefield environment.5 Three different kinds of sensors
were deployed for this purpose: acoustic (a microphone array),
seismic (a vertical-axis geophone), and vision (a camera).
Based on this input data, the aim is for the classifiers to
determine if a vehicle of the designated target type is present in
the detection area. Such functionality is useful in “intelligent
tripwire” scenarios, where the system must act only when
a specific type of target is present, while ignoring other
passing traffic, hence the output class is effectively binary.
The application has safety implications, as false positives,
i.e., incorrectly identifying a vehicle as hostile, could have
consequences for the safety of friendly vehicles, as could false
negatives, i.e., mis-classifying a hostile vehicle as friendly.

An IDK cascade is required that can deliver a strong
constraint on the likelihood of a false-positive or false-negative
output even when a single fault has occurred. If execution
of the IDK cascade is fault free then its expected execution
duration should be minimized. If a fault occurs, then the
deterministic classifier must be called.

Data collection and pre-processing. The manner in which
the input samples were collected is described in [11] as
follows: “We deployed our devices on the grounds of the
DEVCOM Army Research Laboratory Robotics Research Col-
laboration Campus [. . . ] and collected seismic and acoustic
signals, while different ground vehicles were driven around
the site. Data of three different targets: a Polaris all-terrain
vehicle, a Chevrolet Silverado, and Warthog UGV were col-
lected. Each target repeatedly passed by the sensors. The total
length of the experiment was 115 minutes, spread roughly
equally across the three targets.[. . . ] A camera was employed
to simultaneously record video of the target.”

Following the procedures detailed in Sections 4.1 and 4.2
of [1], we processed the raw data outputs (class and confi-
dence) for each base classifier for each of 1800 randomly
chosen input samples6. We assumed a required precision of
0.95 and used this value to compute a confidence threshold
for each base classifier. An IDK classifier was then formed
from each base classifier: for any given input sample, if
the confidence level output by the base classifier met or
exceeded the confidence threshold, then a real class was
output, otherwise the output was IDK. The way in which the
classification thresholds were chosen ensured that the long run
probability of each IDK classifier outputting a real class that
did not match the ground truth was no more than 1 minus the
required precision, i.e. 0.05 in this case study.

Small Case Study. We first consider four IDK classifiers (out
of nine in all labelled from A to I):

5We thank the authors of [11] for providing us with the raw data for this
case study.

6From each input sample, the different base classifiers used as their input
the different kinds of information that were obtained by the different sensors.

• B: deepsense both: Based on the DeepSense neural network
architecture [19], trained using contrastive learning [12],
uses both seismic and acoustic data.

• D: deepsense seismic: Based on the DeepSense neural
network architecture [12], uses only seismic data.

• F : cnn acoustic: Based on a standard convolution neural
network, uses only acoustic data.

• I: yolov5s-compressed: Based on the YOLOv5 neural net-
work (small version) with image compression using the
DeepIoT neural network architecture compression frame-
work [20], uses only image (video) data.
Following the procedures detailed in Sections 4.1 and 4.2

of [1], we used the profiling data for the 1800 input samples
to construct, for each of the 16 possible outputs of the four
IDK classifiers (1 = real class, 0 = IDK), the probability
of occurrence, Prob-S. From those values, we computed the
probability, Prob-E, that each distinct subset of classifiers
would provide at least two real (i.e., not IDK) outputs from
classifiers that are not in each other’s exclusivity sets. This
information is shown in Table I, along with the average-case
and worst-case execution time7 parameters of the classifiers
on a Raspberry Pi 4, considering the 1800 runs, as well
as the arbitrarily assigned execution time of a hypothetical
deterministic classifier X that always returns a real class.

TABLE I
MULTIMODAL EXAMPLE

B F D I Count Prob-S Prob-E
0 0 0 0 56 0.0311 0
0 0 0 1 33 0.0183 0
0 0 1 0 35 0.0194 0
0 0 1 1 18 0.01 0.2178
0 1 0 0 11 0.0061 0
0 1 0 1 5 0.0028 0.0589
0 1 1 0 5 0.0028 0.15
0 1 1 1 4 0.0022 0.3489
1 0 0 0 181 0.1006 0
1 0 0 1 76 0.0422 0.265
1 0 1 0 698 0.3878 0
1 0 1 1 304 0.1689 0.2772
1 1 0 0 82 0.0456 0
1 1 0 1 31 0.0172 0.27
1 1 1 0 195 0.1083 0.15
1 1 1 1 66 0.0367 0.3911

TOTALS 1800 1.00

Classifier B F D I X
Average ET (ms) 17 3.9 11.4 1440.8 10000
WCET (ms) 19.6 5.3 13.7 1613.2 10000

Determining the exclusivity sets involves two distinct forms
of analysis, one for random failures and one for systematic
failures. First, fault trees for each classifier are constructed and
the common mode failures are identified. Next the classifiers
are profiled and Pearson’s correlation coefficient used in a
pair-wise analysis of failure independence. For this initial
look at just four classifiers we derive the exclusivity sets by
only considering the sensor failures. (In the larger case study
that follows, we also consider the pair-wise correlations). We

7The worst-case execution times are 95-percentile estimates, as also used
in [1]. They are close to the average-case execution times due to the fact that
the path taken in neural network classifier code is typically not data dependent.



assume that the sensors have no built-in fault tolerance, and
hence the allowed single failure, as sanctioned by the fault
model, can cause either the seismic data, the acoustic data or
the video data to be corrupted. Therefore, the exclusivity sets
are: E(B) = {B,D,F}, E(D) = {B,D}, E(F ) = {B,F},
and E(I) = {I}.
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The DAG algorithm, described in Section VI-E, was used to
synthesize the optimal IDK cascade. The expected execution
duration of each of the 65 possible IDK cascades is depicted
in Figure 6. The minimum expected execution duration is
7339.9ms and this is delivered by the pair of IDK cascades
⟨D,F, I,B,X⟩ and ⟨F,D, I,B,X⟩ that utilize all 5 classi-
fiers, including the deterministic one. (Recall that the order of
the first two classifiers has no effect on the expected execution
duration). The best IDK cascade with one or two classifiers
is simply ⟨X⟩, since no two IDK classifiers suffice on their
own, and using one IDK classifier along with the deterministic
classifier only adds to the expected duration. The best IDK
cascades with three classifiers are ⟨D,F,X⟩ and ⟨F,D,X⟩
with an expected execution duration of 8515.3ms. Finally, the
best IDK cascades with four classifiers are ⟨D,F, I,X⟩ and
⟨F,D, I,X⟩ with an expected execution duration of 7751.1ms.

Table II shows how the optimal IDK cascades and their
expected execution durations vary for a range of different
execution times CX for the deterministic classifier. As the
execution time of the deterministic classifier is reduced, so
the optimal IDK cascade is composed of fewer classifiers.

TABLE II
SMALL CASE STUDY: THE OPTIMAL IDK CASCADE FOR DIFFERENT

EXECUTION TIMES FOR THE DETERMINISTIC CLASSIFIER

CX Cascade Expected Duration (ms)
10000 ⟨D,F, I, B,X⟩ 7339.9
6000 ⟨D,F, I, B,X⟩ 4904.4
5000 ⟨D,F,X⟩ 4265.3
4000 ⟨D,F,X⟩ 3415.3
1000 ⟨D,F,X⟩ 865.3
250 ⟨D,F,X⟩ 227.9

Table III illustrates how the optimal IDK cascade changes
with a varying latency constraint or deadline. The Pareto
optimal IDK cascades are given along with their expected
execution durations and worst-case execution times. The latter
corresponds to the value of a latency constraint below which
the optimal IDK cascade changes. This table illustrates the
trade-off between a reduction in expected execution duration
and an increase in overall worst-case execution time.

TABLE III
SMALL CASE STUDY: PARETO OPTIMAL IDK CASCADES

IDK Cascade Worst-case (ms) Expected Duration (ms)
⟨X⟩ 10000 10000

⟨D,F,X⟩ 10019 8515.3
⟨D,F, I,X⟩ 11632.2 7751.1

⟨D,F, I, B,X⟩ 11651.8 7339.9

Large Case Study. We now turn to the complete case study
with nine IDK classifiers and a deterministic classifier. The
parameters of the IDK classifiers are given in Table IV. The
final column shows the probability that each classifier will
return a real class, as opposed to IDK. Note, these probabilities
are not independent.

TABLE IV
CHARACTERIZATION OF ALL NINE IDK CLASSIFIERS.

Name Classifier Execution
time (ms)

WCET
(ms)

Probability
of real class

deepsense both A 17.5 21.4 89.9%
deepsense both contras B 17.0 19.6 90.7%
deepsense acoustic C 11.7 14.4 21.3%
deepsense seismic D 11.4 13.7 73.6%
cnn both E 4.0 4.8 59.6%
cnn acoustic F 3.9 5.3 22.1%
cnn seismic G 3.7 4.6 32.7%
yolov5s H 3145.9 3475.9 29.9%
yolov5s-compressed I 1440.8 1613.2 29.8%

The exclusivity sets were computed as follows. First, we
considered random failures. Fault trees for each classifier were
constructed and the common mode failures identified. These
common mode failures stem from shared sensors: audio for
classifiers A,B,C,E, F , seismic for classifiers A,B,D,E,G,
and video for classifiers H, I . Considering systematic failures,
the Pearson correlation coefficients between all pairs of clas-
sifiers were computed, see Table V.

TABLE V
LARGE CASE STUDY: PEARSON CORRELATION COEFFICIENTS

A B C D E F G H I
A 1 0.377 0.111 0.282 0.177 0.080 0.143 0.052 0.048
B 0.377 1 0.059 0.265 0.209 0.055 0.121 -0.043 -0.043
C 0.111 0.059 1 -0.067 0.219 0.701 -0.103 -0.028 -0.030
D 0.282 0.265 -0.067 1 0.127 -0.071 0.219 -0.005 -0.008
E 0.177 0.209 0.219 0.127 1 0.231 0.326 0.035 0.037
F 0.080 0.055 0.701 -0.071 0.231 1 -0.066 -0.036 -0.035
G 0.143 0.121 -0.103 0.219 0.326 -0.066 1 0.155 0.151
H 0.052 -0.043 -0.028 -0.005 0.035 -0.036 0.155 1 0.988
I 0.048 -0.043 -0.030 -0.008 0.037 -0.035 0.151 0.988 1

Observe that for many classifiers this measure is indicative
of pair-wise independent behavior, with absolute correlation



values ≤ 0.1 (green cells). Other pairs of classifiers have
correlated behavior and so cannot be trusted to verify that
each other’s outputs are correct. These pairs of classifiers are
thus placed in each other’s exclusivity sets.

Combining the information about random and systematic
failures, the exclusivity sets are as follows:

E(A) = {A,B,C,D,E, F,G} E(F ) = {A,B,C,E, F}
E(B) = {A,B,C,D,E, F,G} E(G) = {A,B,C,D,E,G}
E(C) = {A,B,C,E, F,G} E(H) = {H, I}
E(D) = {A,B,D,E,G} E(I) = {H, I}
E(E) = {A,B,C,D,E, F,G}

Here, almost all of the exclusions due to correlated systematic
failures are covered by the exclusions due to random (hard-
ware) failures. The only additional ones are between classifiers
C and G, where the correlation (−0.103) is only marginally
outside of the bound used. This is unsurprising, since shared
input types (audio, seismic, video) can also be a primary cause
of correlated systematic failures.

TABLE VI
LARGE CASE STUDY: THE OPTIMAL IDK CASCADE FOR DIFFERENT

EXECUTION TIMES FOR THE DETERMINISTIC CLASSIFIER

CX Cascade Expected Duration (ms)
10000 ⟨G,F,D,C, I, E,A,B,X⟩ 6883.5
6000 ⟨G,F,D,C, I, E,A,B,X⟩ 4616.9
5000 ⟨G,F,D,C, I, E,A,B,X⟩ 4050.2
4000 ⟨G,F,D,C,X⟩ 3266.0
1000 ⟨G,F,D,C,X⟩ 837.6
250 ⟨F,D,X⟩ 227.9

Table VI shows how the optimal IDK cascades and their
expected execution durations vary for a range of different
execution times, CX , for the deterministic classifier. As the
execution time of the deterministic classifier is reduced, so
the optimal IDK cascade is composed of fewer classifiers.
Intuitively, the DAG algorithm is making a trade-off between
fast classification (classifiers F and G), higher probability of
returning real classes, but longer execution time (classifier D),
and also importantly choosing to run classifiers that are not in
each other’s exclusivity sets, e.g., focusing on pairs such as
(G,F ), (F,D), and (D,C). Thus many of the IDK cascades
in Table VI begin with ⟨G,F,D,C⟩. For longer durations
of the deterministic classifier, it becomes more important to
reduce the probability that it will run, and so the expensive
and less effective video based classifier I is selected, followed
by a series of classifiers, E, B, and A that have exclusivity
sets that do not include I . Comparing Table VI with Table II
for the small case study, it is evident that having additional
classifiers to choose from, and the potential for longer IDK
cascades, leads to improved solutions, in terms of a reduction
in the expected execution duration.

The selection of classifiers available in the large case study
is effective in tolerating F = 1 faults. Considering F = 2
faults, then classifiers A, B, and E are effectively rendered
useless by the fact that their outputs can only be verified by

classifiers H and I , which are also in each other’s exclusivity
sets. For F = 2 faults, and an execution time of CX =
10000ms for the deterministic classifier, the optimal IDK
cascade is simply to run the deterministic classifier. However,
with CX = 40000ms, the optimal IDK cascade becomes
⟨G,F, I,D,C,X⟩ with an expected execution duration of
39426.4ms, compared to ⟨G,F,D,C, I, E,A,B,X⟩ with an
expected execution duration of 23883.5 ms for F = 1 fault,
and ⟨E,D,B,A,G, F,C, I,X⟩ with an expected execution
duration of 478.8ms for no fault tolerance.

Finally, we note that the pre-processing needed to obtain
the Prob-E values and the execution of the DAG algorithm for
the large case study takes less than 4 milliseconds on a basic
laptop PC (C++ implementation, debug version), illustrating
the efficiency of the method for a practical problem of typical
size.

VIII. CONCLUSIONS

Future Cyber-Physical Systems seem destined to incorporate
a wide range of learning enabled components. Many of these
components will involve various forms of classification. IDK
classifiers are an effective way of addressing the real-time
requirements of such systems. A cascade of IDK classifiers
can be tailored to meet timing constraints, safety constraints
and performance targets. In this paper we have shown how
to construct IDK cascades that are tolerant of failures, such
failures resulting from random faults (such as sensor errors)
and systematic faults (such as those that can occur when
training data does not match the operational environment).

The approach developed in this paper enables the expected
execution time duration of the IDK cascade to be minimized in
the non-fault case, which is important for meeting deadlines,
minimizing system workload, and reducing energy consump-
tion, while also ensuring that faults can be tolerated. The
approach has been designed so that it can be generalized
in a number of ways: (i) the fault model can involve fail-
operational as well as fail-safe behavior; (ii) the criteria to
minimize can involve more than just fault-free behavior, for
example, a cascade could be designed to deliver fail-safe
behavior if there are three concurrent faults, fail-operational
behavior if there are one or two faults, and to minimize
expected execution duration for fault-free or single-fault be-
havior; and (iii) the run-time IDK cascade can become more
adaptive, for example, represented by a DAG rather than
a sequence, this would allow different choices to be made
depending on the actual run-time behavior of each individual
classifier.
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